Changes in translation rate modulate stress-induced damage of diverse proteins.
نویسندگان
چکیده
Proteostasis is the maintenance of the proper function of cellular proteins. Hypertonic stress disrupts proteostasis and causes rapid and widespread protein aggregation and misfolding in the nematode Caenorhabditis elegans. Optimal survival in hypertonic environments requires degradation of damaged proteins. Inhibition of protein synthesis occurs in response to diverse environmental stressors and may function in part to minimize stress-induced protein damage. We recently tested this idea directly and demonstrated that translation inhibition by acute exposure to cycloheximide suppresses hypertonicity-induced aggregation of polyglutamine::YFP (Q35::YFP) in body wall muscle cells. In this article, we further characterized the relationship between protein synthesis and hypertonic stress-induced protein damage. We demonstrate that inhibition of translation reduces hypertonic stress-induced formation and growth of Q35::YFP, Q44::YFP, and α-synuclein aggregates; misfolding of paramyosin and ras GTPase; and aggregation of multiple endogenous proteins expressed in diverse cell types. Activation of general control nonderepressible-2 (GCN-2) kinase signaling during hypertonic stress inhibits protein synthesis via phosphorylation of eukaryotic initiation factor-2α (eIF-2α). Inhibition of GCN-2 activation prevents the reduction in translation rate and greatly exacerbates the formation and growth of Q35::YFP aggregates and the aggregation of endogenous proteins. The current studies together with our previous work provide the first direct demonstration that hypertonic stress-induced reduction in protein synthesis minimizes protein aggregation and misfolding. Reduction in translation rate also serves as a signal that activates osmoprotective gene expression. The cellular proteostasis network thus plays a critical role in minimizing hypertonic stress-induced protein damage, in degrading stress-damaged proteins, and in cellular osmosensing and signaling.
منابع مشابه
Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet
Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action. Materials and Methods: Male wistar rats were divided into 6...
متن کاملThe Effect of Starvation Stress on the Protein Profiles in Flexibacter chinensis
Background: Analysis of many proteins produced during the transition into the stationary phase and under stress conditions (including starvation stress) demonstrated that a number of novel proteins were induced in common to each stress and could be the reason for cross-protection in bacterial cells. It is necessary to investigate the synthesis of these proteins during different stress condition...
متن کاملStudies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملHypothalamus Pituitary Adrenal axis and stimulatory G proteins signaling role in nociceptive changes induced by forced swim stress
Introduction: Different mechanisms are involved in stress induced analgesia (SIA) and hyperalgesia (SIH). Repeated stress induces development of tolerance to SIA. The role of HPA axis and Gs signaling pathway in these effects are investigated in the current study. Methods: Forced swim stress (5 min/day) in water (20±1 ºC) was employed to adult male Wistar rats (200-250 g). The nociceptive t...
متن کاملFine-Tuning of Gene Expression by tRNA-Derived Fragments during Abiotic Stress Signal Transduction
When plants are subjected to unfavorable environmental conditions, overall gene expression in stressed cells is altered from a programmed pattern for normal development to an adaptive pattern for survival. Rapid changes in plant gene expression include production of stress responsive proteins for protection as well as reduction of irrelevant proteins to minimize energy consumption during growth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 305 12 شماره
صفحات -
تاریخ انتشار 2013